THERBAN®/HNBR for the Energy Sector

Victor Nasreddine*, Kevin Kulbaba, Susanna Lieber, Christian Müller, Brian James, Larry Chen, David Gerrard, Jim Goodson.

*Speaker
LANXESS, FAST/CDI Seals USA, BAKER HUGHES USA

2012 RUBBER CON
May 14-16, Oslo Norway
Overview

- HNBR Elastomer: Product & Properties

- Short term aging study:
 Fluid Aging: IRM903, DIESEL, STEAM
 H₂S Resistance
 Rapid Gas Decompression in CO₂ & N₂

- Summary
Polymer Structure

NBR vs HNBR

NBR Poly(acrylonitrile-butadiene)

- Unsaturation in the main chain
 - \(\Rightarrow \) poor chemical and temperature stability

- ![NBR structure](image)

 - Oil resistance
 - Aging behavior

HNBR Hydrogenated Poly(acrylonitrile-butadiene)

- Hydrogenation required to reduce unsaturation.
 - \(\Rightarrow \) direct polymerization of C\(_2\) and ACN not possible!

- ![HNBR structure](image)

 - Oil resistance
 - Aging behavior
THERBAN® Performance Features

<table>
<thead>
<tr>
<th>HNBR – Ideal polymer for oil field applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ High strength</td>
</tr>
<tr>
<td>➢ Abrasion resistance</td>
</tr>
<tr>
<td>➢ Good mechanical properties at elevated temperature</td>
</tr>
<tr>
<td>➢ Very good heat resistance</td>
</tr>
<tr>
<td>➢ Good low temperature properties</td>
</tr>
<tr>
<td>➢ Excellent resistance to lubricating oils with chemically aggressive additives</td>
</tr>
<tr>
<td>➢ Low permeability to vapors & gases</td>
</tr>
<tr>
<td>➢ Good resistance to ozone</td>
</tr>
<tr>
<td>➢ Good resistance to high energy radiation</td>
</tr>
<tr>
<td>➢ Low compression set</td>
</tr>
<tr>
<td>➢ Good resistance to crude oil even in the presence of hydrogen sulfide, amines, and corrosion inhibitors</td>
</tr>
</tbody>
</table>
Typical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Temperature, °C</td>
<td>- 40 to 165; > 180/short term</td>
</tr>
<tr>
<td>Compound density, g/cc</td>
<td>1.1 – 1.4</td>
</tr>
<tr>
<td>Hardness, Shore A</td>
<td>30 – 90+</td>
</tr>
<tr>
<td>Ultimate Tensile, MPa</td>
<td>40</td>
</tr>
<tr>
<td>Elongation, %</td>
<td>600</td>
</tr>
<tr>
<td>Compression set %, 70hrs/150C</td>
<td>< 15</td>
</tr>
<tr>
<td>Tear Strength, kN/m</td>
<td>50</td>
</tr>
<tr>
<td>Rebound resilience, %</td>
<td>65</td>
</tr>
<tr>
<td>DIN Abrasion, mm³</td>
<td>35</td>
</tr>
</tbody>
</table>
Effect of RDB (Residual Double bond) Level

<table>
<thead>
<tr>
<th>Fully Saturated Grades</th>
<th>Partially Saturated Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide Cure</td>
<td>Sulfur & Peroxide Cure</td>
</tr>
</tbody>
</table>

- **Hot Air Resistance**
- **Ozone Resistance**
- **Lower Heat Build-up**
- **Modulus**
- **Ultimate Elongation**
- **Tear Strength**
Effect of ACN Content

<table>
<thead>
<tr>
<th>ACN Content</th>
<th>Oil Resistance</th>
<th>Fuel Resistance</th>
<th>Hardness</th>
<th>Density</th>
<th>Lower Gas Permeability</th>
<th>Low Temp. Flexibility</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 %</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>49 % ACN</td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline of Compounds (H$_2$S and RGD Testing)

Variation in ACN, RDB, ZnO, S vs P Cure and Hardness

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D / D'</th>
<th>E / E'</th>
<th>F / F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN (%)</td>
<td>34</td>
<td>39</td>
<td>39</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>RDB (%)</td>
<td>0.9 max</td>
<td>0.9 max</td>
<td>0.9 max</td>
<td>0.9 max</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>ZnO (phr)</td>
<td>--</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: peroxide, S: sulfur</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>S</td>
</tr>
</tbody>
</table>

Hardness:
- Compounds A-F have ca. 90 Shore A
- Compounds D', E' and F' have ca. 70 Shore A.
Physical Properties (90 Shore A)

- A: 34% ACN
- B: 39% ACN
- C: 39% ACN (ZnO)
- D: 43% ACN
- E: 43% ACN
- F: 43% ACN (S-Cure)

- Tensile/10, PSI
- Young's Modulus/10, PSI
- M100/10, PSI
- Elongation, %

- < 1% RDB
- 5.5% RDB
Compression Set – Peroxide vs Sulfur

Improved Compression Set with Peroxide and Anaerobic Aging

Compound E’, @ 150 °C

- Air
- ASTM#1
- IRM903

43 % ACN, 5.5 % RDB, **Peroxide Cure**

- 168hrs
- 504hrs

Compound F’, @ 125 °C

- Air
- ASTM#1
- IRM903

43 % ACN, 5.5 % RDB, **Sulfur Cure**

ASTM #1 and IRM 903 help to exclude air during testing
Oil Resistance vs Low Temperature Properties

Higher ACN will lead to an increase in Tg but reduced swelling

Tg (°C) versus ACN

Volume Swell (%) vs ACN

Higher swelling in steam for the S-cured compound
Fluid Resistance (Immersion 3 days)

More hardening for S-Cured Compound with Steam

<table>
<thead>
<tr>
<th>Change in Hardness (pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

High ACN reduces swelling/softening of compounds

- **IRM903, 72hrs/150C**
- **DIESEL, 72hrs/80C**
- **STEAM, 72hrs/175C**
Fluid Resistance (Immersion 3 days)

Change in Tensile, %

Change in Elongation, %
Hot air vs Nitrogen Aging Effects

Change in Properties of 70 Shore A Compounds

Reduced aging effects under N₂ atmosphere
H$_2$S Resistance

Chemical Reactions with C=C are Possible:

\[-\text{C} = \text{C} \quad \xrightarrow{\text{H}_2\text{S}} \quad \text{C} - \text{C} \quad + \quad \text{C} = \text{C} \quad \rightarrow \quad \text{C} - \text{C} - \text{S} - \text{C} - \text{C} -\]

Addition Reaction Crosslinking Reaction

Can extend lifetime and upper temperature limits with HNBR
H$_2$S Resistance

Experimental Testing Procedure

Five O-rings (214 type) of each compound were tested

Gas mixture composed of:
- 5% CO$_2$
- 10% H$_2$S
- 85% CH$_4$

No liquid phase was present in the vessel

The vessel was maintained at 150°C and 10 MPa for 72 hours

The pressure was then released at a very slow rate (avoid RGD)
less than 0.15 MPa/min
H₂S Resistance

High ACN and S-Cure shows reduced H₂S Resistance

- Chg in H, pts
- Chg in T, %
- Chg in EB, %
- Chg in Weight, %

P Cure, < 1% RDB
S Cure
Rapid Gas Decompression Resistance (CO$_2$)

Experimental Testing Procedure

Five O-rings of each of compounds A, D, and F were tested.

Vessel was filled with CO$_2$ at 100°C, 12 MPa for 24 hours.

The pressure was released at a rate of 3.7 MPa/min to simulate explosive decompression test conditions.

The O-rings of each compound were sectioned into two equal pieces and inspected under SEM with 50X magnification.
Rapid Gas Decompression Resistance (CO₂)

Good Results (no defects observable)

COMPOUND A
34 ACN, < 0.9 % RDB

COMPOUND D
43 ACN, < 0.9 % RDB
Rapid Gas Decompression Resistance (CO_2)

Good Results (no defects observable)

All compounds show no defects, cracks, or damage at these conditions - very good resistance to rapid gas decompression

COMPOUND F

43 ACN, sulfur cure
Rapid Gas Decompression Resistance (N₂)

Experimental Testing Procedure / Results

ASTM dumbbells of compounds A (34 % ACN) and D (43 % ACN) were tested in N₂ at 100°C, 7 MPa for 24 hours.

The pressure was released at a rate of 3.7 MPa/min to simulate explosive decompression test conditions.

Both compounds showed no evidence of blisters, porosity or defects.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN (%)</td>
<td>34</td>
<td>43</td>
</tr>
<tr>
<td>Chg in Hardness, pts</td>
<td>-1.8</td>
<td>-0.4</td>
</tr>
<tr>
<td>Chg in Tensile, %</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>Chg in Elongation, %</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Chg in volume, %</td>
<td>1</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Summary

Good Fluid Resistance and Rapid Gas Decompression Resistance

- Good high temperature aging properties for peroxide compounds
- Sulfur cured compounds show severe aging
- Reduced swelling with higher ACN, but reduced low T flexibility
- Improved high temperature stability under Nitrogen
- Peroxide cured HNBR compounds display good H$_2$S resistance: slight increase in aging (reduced EB) with higher ACN contents
- All compounds displayed very good RGD properties when tested under CO$_2$ and N$_2$
Thank you for your attention! Questions?

For more information please visit
www.therban.com
www.trp.lanxess.com

This presentation contains certain forward-looking statements, including assumptions, opinions and views of the company or cited from third party sources. Various known and unknown risks, uncertainties and other factors could cause the actual results, financial position, development or performance of the company to differ materially from the estimations expressed or implied herein. The company does not guarantee that the assumptions underlying such forward looking statements are free from errors nor do they accept any responsibility for the future accuracy of the opinions expressed in this presentation or the actual occurrence of the forecasted developments.

No representation or warranty (express or implied) is made as to, and no reliance should be placed on, any information, including projections, estimates, targets and opinions, contained herein, and no liability whatsoever is accepted as to any errors, omissions or misstatements contained herein, and, accordingly, none of the company or any of its parent or subsidiary undertakings or any of such person’s officers, directors or employees accepts any liability whatsoever arising directly or indirectly from the use of this document.